Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
JOR Spine ; 6(4): e1280, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156062

RESUMO

Biomarkers are commonly recognized as objective indicators of a medical state or clinical outcome and have been widely used as clinical and diagnostic tools and surrogate endpoints in many pathological conditions. In the context of intervertebral disc (IVD) and associated back pain, also known as degenerative disc disease (DDD), the use of biomarkers has been poorly explored. DDD is currently diagnosed using imaging techniques and subjective pain scales, limiting an objective association between DDD and pain levels, as well as an evaluation of disease progression. There is a need for objective and reliable measurements for DDD, pain and pathology progression. DDD predictors could also help clinicians in deciding on the optimal treatment for distinct patient groups. This review addresses the current candidate biomarkers in DDD, including imaging, genetic, metabolite and protein-based parameters, both at the tissue and systemic levels, that may become a major advance in the diagnosis and prognosis of the disease, as well as in the management of therapeutic approaches to DDD.

3.
Aging Cell ; 22(8): e13873, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254638

RESUMO

Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging. For that, bovine coccygeal discs from young (12 months) and old (10-16 years old) animals were dissected and primary NP cells were isolated. Gene expression and proteomics of fresh NP cells were performed. NP cells were labelled with propidium iodide and analysed by flow cytometry for the expression of CD29, CD44, CD45, CD146, GD2, Tie2, CD34 and Stro-1. Morphological cell features were also dissected by imaging flow cytometry. Elder NP cells (up-regulated bIL-6 and bMMP1 gene expression) presented lower percentages of CD29+, CD44+, CD45+ and Tie2+ cells compared with young NP cells (upregulated bIL-8, bCOL2A1 and bACAN gene expression), while GD2, CD146, Stro-1 and CD34 expression were maintained with age. NP cellulome showed an upregulation of proteins related to endoplasmic reticulum (ER) and melanosome independently of age, whereas proteins upregulated in elder NP cells were also associated with glycosylation and disulfide bonds. Flow cytometry analysis of NP cells disclosed the existence of 4 subpopulations with distinct auto-fluorescence and size with different dynamics along aging. Regarding cell morphology, aging increases NP cell area, diameter and vesicles. These results contribute to a better understanding of NP cells aging and highlighting potential anti-aging targets that can help to mitigate age-related disc disease.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Bovinos , Núcleo Pulposo/metabolismo , Antígeno CD146/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Envelhecimento/metabolismo
4.
Molecules ; 28(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110656

RESUMO

The use of human Mesenchymal Stem Cells (hMSC) as therapeutic agents for advanced clinical therapies relies on their in vitro expansion. Over the last years, several efforts have been made to optimize hMSC culture protocols, namely by mimicking the cell physiological microenvironment, which strongly relies on signals provided by the extracellular matrix (ECM). ECM glycosaminoglycans, such as heparan-sulfate, sequester adhesive proteins and soluble growth factors at the cell membrane, orchestrating signaling pathways that control cell proliferation. Surfaces exposing the synthetic polypeptide poly(L-lysine, L-leucine) (pKL) have previously been shown to bind heparin from human plasma in a selective and concentration-dependent manner. To evaluate its effect on hMSC expansion, pKL was immobilized onto self-assembled monolayers (SAMs). The pKL-SAMs were able to bind heparin, fibronectin and other serum proteins, as demonstrated by quartz crystal microbalance with dissipation (QCM-D) studies. hMSC adhesion and proliferation were significantly increased in pKL-SAMs compared to controls, most probably related to increased heparin and fibronectin binding to pKL surfaces. This proof-of-concept study highlights the potential of pKL surfaces to improve hMSC in vitro expansion possible through selective heparin/serum protein binding at the cell-material interface.


Assuntos
Fibronectinas , Peptídeos , Humanos , Comunicação Celular , Heparina/farmacologia , Heparina/química , Proliferação de Células
5.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502517

RESUMO

Intervertebral disc (IVD) degeneration involves a complex cascade of events, including degradation of the native extracellular matrix, loss of water content, and decreased cell numbers. Cell recruitment strategies for the IVD have been increasingly explored, aiming to recruit either endogenous or transplanted cells. This study evaluates the IVD therapeutic potential of a chemoattractant delivery system (HAPSDF5) that combines a hyaluronan-based thermoreversible hydrogel (HAP) and the chemokine stromal cell derived factor-1 (SDF-1). HAPSDF5 was injected into the IVD and was combined with an intravenous injection of mesenchymal stem/stromal cells (MSCs) in a pre-clinical in vivo IVD lesion model. The local and systemic effects were evaluated two weeks after treatment. The hydrogel by itself (HAP) did not elicit any adverse effect, showing potential to be administrated by intradiscal injection. HAPSDF5 induced higher cell numbers, but no evidence of IVD regeneration was observed. MSCs systemic injection seemed to exert a role in IVD regeneration to some extent through a paracrine effect, but no synergies were observed when HAPSDF5 was combined with MSCs. Overall, this study shows that although the injection of chemoattractant hydrogels and MSC recruitment are feasible approaches for IVD, IVD regeneration using this strategy needs to be further explored before successful clinical translation.


Assuntos
Quimiocina CXCL12/uso terapêutico , Ácido Hialurônico/uso terapêutico , Degeneração do Disco Intervertebral/tratamento farmacológico , Administração Intravenosa/métodos , Animais , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Quimiocina CXCL12/administração & dosagem , Fatores Quimiotáticos/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Ácido Hialurônico/administração & dosagem , Hidrogéis/uso terapêutico , Disco Intervertebral/efeitos dos fármacos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/fisiopatologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Wistar
6.
Psychol Res Behav Manag ; 14: 1359-1369, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512046

RESUMO

PURPOSE: Growing evidence suggests that peritraumatic tonic immobility, an involuntary defensive response that involves extreme physical immobility and the perceived inability to escape, is a significant predictor of post-traumatic stress disorder (PTSD) symptomatology. However, this issue has not been specifically addressed in adolescents. Here, we investigated whether tonic immobility response experienced during the worst childhood or adolescent trauma is associated with PTSD symptom severity in a non-clinical student sample. METHODS: The sample was composed of students in 9th grade who were attending public and private schools. Symptoms of post-traumatic stress and tonic immobility were assessed using questionnaires. We performed bivariate and multivariate negative binomial regressions to examine whether tonic immobility was associated with PTSD symptomatology after controlling for confounders (peritraumatic dissociation, peritraumatic panic reactions, gender, age and time since trauma). RESULTS: We found an association between tonic immobility and PTSD symptom severity, even after controlling for confounders. Therefore, tonic immobility is associated with PTSD symptoms in trauma-exposed adolescents. CONCLUSION: These findings highlight tonic immobility as a possible risk factor that could be used to provide direction for more targeted trauma interventions for individuals, particularly those at risk for developing PTSD. Therefore, it contributes to preventing and reducing the psychiatric burden in adolescence and later in life.

7.
JOR Spine ; 4(2): e1150, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34337335

RESUMO

BACKGROUND: Rats are a widely accepted preclinical model for evaluating intervertebral disc (IVD) degeneration and regeneration. IVD morphology is commonly assessed using histology, which forms the foundation for quantifying the state of IVD degeneration. IVD degeneration severity is evaluated using different grading systems that focus on distinct degenerative features. A standard grading system would facilitate more accurate comparison across laboratories and more robust comparisons of different models and interventions. AIMS: This study aimed to develop a histology grading system to quantify IVD degeneration for different rat models. MATERIALS & METHODS: This study involved a literature review, a survey of experts in the field, and a validation study using 25 slides that were scored by 15 graders from different international institutes to determine inter- and intra-rater reliability. RESULTS: A new IVD degeneration grading system was established and it consists of eight significant degenerative features, including nucleus pulposus (NP) shape, NP area, NP cell number, NP cell morphology, annulus fibrosus (AF) lamellar organization, AF tears/fissures/disruptions, NP-AF border appearance, as well as endplate disruptions/microfractures and osteophyte/ossification. The validation study indicated this system was easily adopted, and able to discern different severities of degenerative changes from different rat IVD degeneration models with high reproducibility for both experienced and inexperienced graders. In addition, a widely-accepted protocol for histological preparation of rat IVD samples based on the survey findings include paraffin embedding, sagittal orientation, section thickness < 10 µm, and staining using H&E and/or SO/FG to facilitate comparison across laboratories. CONCLUSION: The proposed histological preparation protocol and grading system provide a platform for more precise comparisons and more robust evaluation of rat IVD degeneration models and interventions across laboratories.

8.
Eur Spine J ; 30(8): 2247-2256, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34169354

RESUMO

PURPOSE: Formation of terminal complement complex (TCC), a downstream complement system activation product inducing inflammatory processes and cell lysis, has been identified in degenerated discs. However, it remains unclear which molecular factors regulate complement activation during disc degeneration (DD). This study investigated a possible involvement of the pro-inflammatory cytokine interleukin-1ß (IL-1ß) and the lysosomal protease cathepsin D (CTSD). METHODS: Disc biopsies were collected from patients suffering from DD (n = 43) and adolescent idiopathic scoliosis (AIS, n = 13). Standardized tissue punches and isolated cells from nucleus pulposus (NP), annulus fibrosus (AF) and endplate (EP) were stimulated with 5% human serum (HS) alone or in combination with IL-1ß, CTSD or zymosan. TCC formation and modulation by the complement regulatory proteins CD46, CD55 and CD59 were analysed. RESULTS: In DD tissue cultures, IL-1ß stimulation decreased the percentage of TCC + cells in AF and EP (P < 0.05), whereas CTSD stimulation significantly increased TCC deposition in NP (P < 0.01) and zymosan in EP (P < 0.05). Overall, the expression of CD46, CD55 and CD59 significantly increased in all isolated cells during culture (P < 0.05). Moreover, cellular TCC deposition was HS concentration dependent but unaffected by IL-1ß, CTSD or zymosan. CONCLUSION: These results suggest a functional relevance of IL-1ß and CTSD in modulating TCC formation in DD, with differences between tissue regions. Although strong TCC deposition may represent a degeneration-associated event, IL-1ß may inhibit it. In contrast, TCC formation was shown to be triggered by CTSD, indicating a multifunctional involvement in disc pathophysiology.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Adolescente , Catepsina D , Células Cultivadas , Complexo de Ataque à Membrana do Sistema Complemento , Humanos , Interleucina-1beta
9.
Biomater Sci ; 9(9): 3209-3227, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949372

RESUMO

Chitosan (Ch) has recently been used in different studies as a vaccine adjuvant with an ability to modulate the tumor microenvironment (TME). This systematic review aims to elucidate the added value of using Ch-based therapies for immunotherapeutic strategies in cancer treatment, through the exploration of different Ch-based formulations, their capacity to modulate immune cells in vitro and in vivo, and their translational potential for clinical settings. A systematic review was conducted on PubMed, following both inclusion and exclusion steps. Original articles which focused on the immunomodulatory role of Ch-based formulations in the TME were included, as well as its usage as a delivery vehicle for other immunomodulatory molecules. This review illustrates the added value of Ch-based systems to reshape the TME, through the modulation of immune cells using different Ch formulations, namely solutions, films, gels, microneedles and nanoparticles. Generally, Ch-based formulations increase the recruitment and proliferation of cells associated with pro-inflammatory abilities and decrease cells which exert anti-inflammatory activities. These effects correlated with a decreased tumor weight, reduced metastases, reversion of the immunosuppressive TME and increased survival in vivo. Overall, Ch-based formulations present the potential for immunotherapy in cancer. Nevertheless, clinical translation remains challenging, since the majority of the studies use Ch in formulations with other components, implicating that some of the observed effects could result from the combination of the individual effects. More studies on the use of different Ch-based formulations, complementary to standardization and disclosure of the Ch properties used are required to improve the immunomodulatory effects of Ch-based formulations in cancer.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Géis , Imunomodulação , Neoplasias/tratamento farmacológico , Microambiente Tumoral
10.
Front Bioeng Biotechnol ; 9: 802789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155408

RESUMO

Mesenchymal stem/stromal cell (MSC)-based therapies for low back pain and intervertebral disc (IVD) degeneration have been emerging, despite the poor knowledge of their full mechanism of action. As failure of the annulus fibrosus (AF) is often associated with IVD herniation and inflammation, the objective of the present study was to investigate the impact of the MSC secretome on human AF cells exposed to mechanical loading and a pro-inflammatory environment. Human AF cells isolated from IVD biopsies from patients with adolescent idiopathic scoliosis (AIS) or disc degeneration (DD) were exposed to physiological cyclic tensile strain (CTS) for 72 h in a custom-made device, with or without interleukin (IL)-1ß medium supplementation. AF cells stimulated with CTS + IL-1ß were then treated with secretome from IL-1ß-preconditioned MSCs for 48 h. AF cell metabolic activity, gene expression, protein secretion, matrix metalloproteinase (MMP) activity, and tissue inhibitor of MMPs (TIMP) concentration were evaluated. Expanded AF cells from AIS and DD patients revealed similar metabolic activity and gene expression profiles. CTS stimulation upregulated collagen type I (COL1A1) expression, while IL-1ß significantly stimulated IL-6, IL-8, MMP-1, and MMP-3 gene expression and prostaglandin E2 production by AF cells but downregulated COL1A1. The combination of CTS + IL-1ß had a similar outcome as IL-1ß alone, accompanied by a significant upregulation of elastin. The MSC secretome did not show any immunomodulatory effect on CTS + IL-1ß-stimulated AF cells but significantly decreased MMP-1, MMP-2, MMP-3, and MMP-9, while increasing the production of TIMP-1. The obtained results demonstrate a stronger impact of the inflammatory milieu on human AF cells than upper physiologic mechanical stress. In addition, a new MSC mechanism of action in degenerated IVD consisting of the modulation of AF MMP activity was also evidenced, contributing to the advancement of knowledge in AF tissue metabolism.

11.
Neuroimage ; 224: 117404, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971264

RESUMO

Victims of urban violence are at risk of developing Posttraumatic Stress Disorder (PTSD), one of the most debilitating consequences of violence. Considering that PTSD may be associated with inefficient selection of defensive responses, it is important to understand the relation between motor processing and PTSD. The present study aims to investigate the extent to which the severity of posttraumatic stress symptoms (PTSS) is related to motor preparation against visual threat cues in victims of urban violence. Participants performed a choice reaction time task while ignoring a picture that could be threating or neutral. The EEG indices extracted were the motor-related amplitude asymmetry (MRAA) in the alpha frequency range, and the lateralized readiness potential (LRP). We observed a linear relation between longer LRP latency and a slower reaction time, selectively during threat processing (compared to neutral) in low PTSS, but not in high PTSS participants. Alpha MRAA suppression and the PTSS were also linearly related: the smaller the alpha MRAA suppression in the threat condition relative to neutral, the greater the PTSS. These results provide evidence that threatening cues affect motor processing that is modulated by the severity of PTSS in victims of urban violence.


Assuntos
Variação Contingente Negativa/fisiologia , Sinais (Psicologia) , Córtex Motor/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Violência , Ritmo alfa/fisiologia , Encéfalo/fisiopatologia , Eletroencefalografia , Sincronização de Fases em Eletroencefalografia , Feminino , Humanos , Masculino , Atividade Motora , Estimulação Luminosa , Tempo de Reação , Adulto Jovem
12.
Eur Spine J ; 30(1): 217-226, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936402

RESUMO

PURPOSE: The complement system is a crucial part of innate immunity. Recent work demonstrated an unexpected contribution to tissue homeostasis and degeneration. This study investigated for the first time, in human disc tissues, the deposition profile of the complement activation product terminal complement complex (TCC), an inflammatory trigger and inducer of cell lysis, and its inhibitor CD59, and their correlation with the degree of disc degeneration (DD). METHODS: Disc biopsies were collected from patients diagnosed with DD (n = 39, age 63 ± 12) and adolescent idiopathic scoliosis (AIS, n = 10, age 17 ± 4) and compared with discs from healthy Young (n = 11, age 7 ± 7) and Elder (n = 10, age 65 ± 15) donors. Immunohistochemical detection of TCC and CD59 in nucleus pulposus (NP), annulus fibrosus (AF) and endplate (EP) was correlated with age, Pfirrmann grade and Modic changes. RESULTS: Higher percentage of TCC+ cells was detected in the NP and EP of DD compared to Elder (P < 0.05), and in the EP of Young versus Elder (P < 0.001). In DD, TCC deposition was positively correlated with Pfirrmann grade, but not with Modic changes, whereas for Young donors, a negative correlation was found with age, indicating TCC's involvement not only in DD, but also in early stages of skeletal development. Higher CD59 positivity was found in AIS and DD groups compared to Young (P < 0.05), and it was negatively correlated with the age of the patients. CONCLUSION: TCC deposition positively correlated with the degree of disc degeneration. A functional relevance of TCC may exist in DD, representing a potential target for new therapeutics.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Adulto Jovem
13.
Biomaterials ; 257: 120218, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32736253

RESUMO

Radiotherapy (RT) is an essential treatment modality for several types of cancer. Despite its therapeutic potential, RT is frequently insufficient to overcome the immunosuppressive nature of the tumor microenvironment, failing to control tumor metastases. Innovative immunomodulatory strategies, like immunostimulatory biomaterials could be used to boost the immunogenic effects of RT. Herein, we addressed the synergistic potential of immunostimulatory chitosan/poly(γ-glutamic acid) nanoparticles (Ch/γ-PGA NPs) combined with RT to induce antitumor immunity in the 4T1 orthotopic breast tumor mouse model. Non-treated animals had progressive primary tumor growth and developed splenomegaly and lung metastases. While RT decreased primary tumor burden, Ch/γ-PGA NPs-treatment decreased systemic immunosuppression and lung metastases. The combination therapy (RT + Ch/γ-PGA NPs) synergistically impaired 4T1 tumor progression, which was associated with a significant primary tumor growth and splenomegaly reduction, a decrease in the percentage of splenic immunosuppressive myeloid cells and an increase in antitumoral CD4+IFN-γ+ population. Notably, animals from the combination therapy presented less and smaller lung metastatic foci and lower levels of the systemic pro-tumor cytokines IL-3, IL-4, IL-10, and of the CCL4 chemokine, in comparison to non-treated animals. Overall, these results evidenced that Ch/γ-PGA NPs potentiate and synergize with RT, headlining their promising role as adjuvant anticancer strategies.


Assuntos
Quitosana , Neoplasias Mamárias Experimentais , Nanopartículas , Animais , Feminino , Imunoterapia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Ácido Poliglutâmico/análogos & derivados
14.
Colloids Surf B Biointerfaces ; 189: 110836, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32066089

RESUMO

Human mesenchymal stem/stromal cells (hMSC) are promising therapeutic agents for regenerative medicine. However, therapeutic doses necessary for clinical application require in vitro expansion, ideally under Xeno-Free (XF) conditions to avoid the use of foetal bovine serum (FBS). We previously reported that hMSCs could be expanded using a pharmaceutical-grade human plasma-derived supplement for cell culture (SCC, Plastem®) combined with bFGF and TGFß1, on fibronectin (Fn)-coated surfaces. hMSCs expansion may also be affected by the chemistry of the culture surface, which modulates protein adsorption at the cell-material interface and, consequently, cell behavior. This work aimed to evaluate the effect of surface chemistry on hMSCs behavior in SCC-based XF media. For that, self-assembled monolayers (SAMs) with hydrophobic (-CH3) and hydrophilic (neutral -OH, positively charged -NH3+ and negatively charged -COO-) groups were used as model surfaces. Under XF conditions, Fn coating showed to be necessary to improve hMSC adhesion (4 h) onto all surfaces, except for OH-SAMs, probably due to a low protein adsorption capacity characteristic of this surface. In terms of cell metabolic activity (5 days) on Fn-coated surfaces, an increase over time under XF conditions was observed in all SAMs except in CH3-SAMs, which can be attributed to strong and irreversible protein adsorption characteristic of hydrophobic surfaces. This trend was also observed under FBS conditions. Nevertheless, none of the surfaces improved hMSC metabolic activity, as compared with tissue-cultured surfaces. Overall, this work describes the role of surface chemistry in XF hMSC expansion.


Assuntos
Células-Tronco Mesenquimais/citologia , Adulto , Proliferação de Células , Células Cultivadas , Ouro/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Tamanho da Partícula , Propriedades de Superfície , Adulto Jovem
15.
Front Immunol ; 10: 1508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333653

RESUMO

Low back pain is a highly prevalent clinical problem and intervertebral disc (IVD) degeneration is now accepted as the major pathophysiological mechanism responsible for this condition. Accumulating evidence suggests that inflammation plays a crucial role in the progression of human IVD degeneration, with macrophages being pointed as the key immune cell players in this process since their infiltration in degenerated IVD samples has been extensively demonstrated. Since they are highly plastic, macrophages can play different roles depending on the microenvironmental cues. The study of inflammation associated with IVD degeneration has been somehow neglected and one of the reasons is related with lack of adequate models. To overcome this, we established and characterized a new model of IVD organ culture under pro-inflammatory conditions to further dissect the role of macrophages in IVD associated immune response. For that, human monocyte-derived macrophages were co-cultured either with bovine caudal IVD punches in the presence of the pro-inflammatory cytokine IL-1ß, or IVD-conditioned medium (CM), to investigate how IVD-produced factors influence macrophage phenotype. After 72 h, metabolic activity, gene expression and cytokine profile of macrophages and IVD cells were measured. Our results show that macrophages and IVDs remain metabolically active in the presence of IL-1ß, significantly upregulate CCR7 gene expression and increase production of IL-6 on macrophages. When treating macrophages with IL-1ß-IVD-CM, CCR7 upregulation follows the same trend, while for IL-6 an opposite effect was observed. On the other hand, macrophages interfere with IVD ECM remodeling, decreasing MMP3 expression and downregulating aggrecan and collagen II gene expression in the presence of IL-1ß. Overall, the co-culture model established in this study can be considered a suitable approach to address the cellular and molecular pathways that regulate macrophage-IVD crosstalk, suggesting that degenerated IVD tissue tends to polarize human macrophages toward a more pro-inflammatory profile, which seems to aggravate IVD degeneration. This model could be used to improve the knowledge of the mechanisms that link IVD degeneration and the immune response.


Assuntos
Microambiente Celular/imunologia , Regulação para Baixo/imunologia , Degeneração do Disco Intervertebral/imunologia , Macrófagos/imunologia , Animais , Bovinos , Citocinas/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Degeneração do Disco Intervertebral/patologia , Macrófagos/patologia
16.
Biomater Sci ; 7(8): 3386-3403, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31233057

RESUMO

IFN-γ therapy has been approved by the Food and Drug Administration (FDA) for the treatment of chronic granulomatous disease and severe malignant osteopetrosis. Despite the promising IFN-γ-based therapeutic applications, its limited success in clinical trials is related with limitations inherent to its molecular properties and with the difficulties to deliver it locally or with adequate periodicity to achieve a therapeutic effect. We have previously shown that chitosan (Ch)/poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) are immunostimulatory, impairing colorectal cancer cell invasion. Ch is a biocompatible cationic polysaccharide extensively studied and already approved for biomedical applications while γ-PGA is a poly(amino acid), biodegradable and negatively charged. Here, we evaluated the potential of Ch/γ-PGA NPs as vehicles for IFN-γ and their ability to modulate immune cells' phenotype. In this study, Ch/IFN-γ/γ-PGA nanoparticles (IFN-γ-NPs) prepared by a co-acervation method, presenting a size of approximately 180 nm and a low polydispersity index, were tested for their immunomodulatory activity. These IFN-γ-NPs induced an immunostimulatory profile on dendritic cells (DCs) with increased cell surface costimulatory molecules and secretion of pro-inflammatory cytokines, including IL-6, IL-12p40 and TNF-α. IFN-γ-NPs also modulated the IL-10-stimulated macrophage profile, increasing their ability to secrete the pro-inflammatory cytokines IL-6, IL-12p40 and TNF-α. Concomitantly, these phenotypic alterations enhanced T cell proliferation. In addition, the ability of DCs and macrophages to induce colorectal cancer cell invasion was hampered in the presence of IFN-γ-NPs. Although the major observations were mediated by Ch/γ-PGA NPs, the incorporation of IFN-γ into NPs potentiated the expression of CD40 and CD86, and the impairment of colorectal cancer cell invasion. This work bridges the previously reported immunostimulatory capacity of Ch/γ-PGA NPs with their potential as carriers for immunomodulatory molecules, like IFN-γ, opening new avenues for their use in clinical settings.


Assuntos
Quitosana/química , Neoplasias Colorretais/imunologia , Interferon gama/química , Interferon gama/farmacologia , Nanopartículas/química , Ácido Poliglutâmico/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Ácido Poliglutâmico/química , Fator de Transcrição STAT1/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
17.
Eur Spine J ; 28(5): 922-933, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689044

RESUMO

PURPOSE: The pathomechanism of annulus fibrosus (AF) failure is still unknown. We hypothesise that mechanical overload and an inflammatory microenvironment contribute to AF structural weakening. Therefore, the objective of this study was to investigate the influence of these factors on the AF, particularly the translamellar bridging network (TLBN) which connects the AF lamellae. METHODS: A bovine AF organ culture (AF-OC) model of standardised AF rings was used to study the individual and combined effects of cyclic tensile strain (CTS) and IL-1ß (1 ng/mL) culture medium supplementation. AF-OCs were analysed for PGE2 production (ELISA) and deposition of IL-6, COX-2, fibrillin, and MMP3 in the tissue (immunohistochemistry, IHC). The mechanical strength of the TLBN was evaluated using a peel test to measure the strength required to separate an AF segment along a lamellar bound. RESULTS: The combination of CTS + IL-1ß led to a significant increase in PGE2 production compared to Control (p < 0.01). IHC evaluations showed that the CTS + IL-1ß group exhibited higher production of COX-2 and MMP3 within the TLBN regions compared to the adjacent lamellae and a significant increase in IL-6 ratio compared to Control (p < 0.05). A significant decrease in the annular peel strength was observed in the CTS + IL1ß group compared to Control (p < 0.05). CONCLUSION: Our findings suggest that CTS and IL-1ß act synergistically to increase pro-inflammatory and catabolic molecules within the AF, particularly the TLBN, leading to a weakening of the tissue. This standardised model enables the investigation of AF/TLBN structure-function relationship and is a platform to test AF-focused therapeutics. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Anel Fibroso/metabolismo , Anel Fibroso/patologia , Estresse Mecânico , Animais , Bovinos , Sobrevivência Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fibrilinas/metabolismo , Imuno-Histoquímica , Interleucina-1beta/farmacologia , Interleucina-6/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Microscopia , Modelos Animais
18.
Front Immunol ; 9: 2837, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564236

RESUMO

Mesenchymal stromal cells (MSCs) are self-renewing, culture-expandable adult stem cells that have been isolated from a variety of tissues, and possess multipotent differentiation capacity, immunomodulatory properties, and are relatively non-immunogenic. Due to this unique set of characteristics, these cells have attracted great interest in the field of regenerative medicine and have been shown to possess pronounced therapeutic potential in many different pathologies. MSCs' mode of action involves a strong paracrine component resulting from the high levels of bioactive molecules they secrete in response to the local microenvironment. For this reason, MSCs' secretome is currently being explored in several clinical contexts, either using MSC-conditioned media (CM) or purified MSC-derived extracellular vesicles (EVs) to modulate tissue response to a wide array of injuries. Rather than being a constant mixture of molecular factors, MSCs' secretome is known to be dependent on the diverse stimuli present in the microenvironment that MSCs encounter. As such, the composition of the MSCs' secretome can be modulated by preconditioning the MSCs during in vitro culture. This manuscript reviews the existent literature on how preconditioning of MSCs affects the therapeutic potential of their secretome, focusing on MSCs' immunomodulatory and regenerative features, thereby providing new insights for the therapeutic use of MSCs' secretome.


Assuntos
Condicionamento Psicológico/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Diferenciação Celular/fisiologia , Meios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa/métodos
19.
Arthritis Res Ther ; 20(1): 251, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400975

RESUMO

Lumbar disc herniation (LDH) is highly associated with inflammation in the context of low back pain. Currently, inflammation is associated with adverse symptoms related to the stimulation of nerve fibers that may lead to pain. However, inflammation has also been indicated as the main factor responsible for LDH regression. This apparent controversy places inflammation as a good prognostic indicator of spontaneous regression of LDH. This review addresses the molecular and cellular mechanisms involved in LDH regression, including matrix remodeling and neovascularization, in the scope of the clinical decision on conservative versus surgical intervention. Based on the evidence, a special focus on the inflammatory response in the LDH context is given, particularly in the monocyte/macrophage role. The phenomenon of spontaneous regression of LDH, extensively reported in the literature, is therefore analyzed here under the perspective of the modulatory role of inflammation.


Assuntos
Degeneração do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Dor Lombar/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Humanos , Inflamação/diagnóstico por imagem , Inflamação/epidemiologia , Inflamação/imunologia , Degeneração do Disco Intervertebral/epidemiologia , Degeneração do Disco Intervertebral/imunologia , Deslocamento do Disco Intervertebral/epidemiologia , Deslocamento do Disco Intervertebral/imunologia , Dor Lombar/epidemiologia , Dor Lombar/imunologia , Vértebras Lombares/imunologia , Remissão Espontânea
20.
J Control Release ; 289: 56-69, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30261205

RESUMO

Extracellular vesicles (EV), in particular exosomes, have been the object of intense research, due to their potential to mediate intercellular communication, modulating the phenotype of target cells. The natural properties and functions of EV are being exploited as biomarkers for disease diagnosis and prognosis, and as nano-bio-carriers for the development of new therapeutic strategies. EV have been particularly examined in the field of cancer, but are also increasingly investigated in other areas, like immune-related diseases and regenerative medicine. In this review, the therapeutic use of EV as drug delivery systems is described, balancing the advantages and drawbacks of different routes for their in vivo administration. Systemic and local delivery of EV are discussed, tackling the persisting difficulties in the assessment of their pharmacokinetics, pharmacodynamics and biodistribution in vivo. Finally, we discuss the future perspectives for incorporating EV into delivery systems and their use for an improved and controlled release of EV in vivo.


Assuntos
Vesículas Extracelulares/química , Animais , Materiais Biocompatíveis/química , Preparações de Ação Retardada , Portadores de Fármacos , Liberação Controlada de Fármacos , Exossomos/química , Vesículas Extracelulares/metabolismo , Humanos , Nanopartículas/química , Suspensões , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...